Isolation and Mechanical Measurements of Myofibrils from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
نویسندگان
چکیده
Tension production and contractile properties are poorly characterized aspects of excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Previous approaches have been limited due to the small size and structural immaturity of early-stage hiPSC-CMs. We developed a substrate nanopatterning approach to produce hiPSC-CMs in culture with adult-like dimensions, T-tubule-like structures, and aligned myofibrils. We then isolated myofibrils from hiPSC-CMs and measured the tension and kinetics of activation and relaxation using a custom-built apparatus with fast solution switching. The contractile properties and ultrastructure of myofibrils more closely resembled human fetal myofibrils of similar gestational age than adult preparations. We also demonstrated the ability to study the development of contractile dysfunction of myofibrils from a patient-derived hiPSC-CM cell line carrying the familial cardiomyopathy MYH7 mutation (E848G). These methods can bring new insights to understanding cardiomyocyte maturation and developmental mechanical dysfunction of hiPSC-CMs with cardiomyopathic mutations.
منابع مشابه
Isolation and Characterization of Human Induced Pluripotent Stem Cells-Derived Mesenchymal Progenitors
Purpose: Isolating human induced pluripotent stem cells (hiPS)-derived mesenchymal progenitors as a new source of mesenchymal cells which can differentiate into different lineages like adipose and bone. Materials and Methods: After 7 days of hiPS1 culture on matrigle coated dishes, spindle like cells around colonies were removed by cell scraper. These cells that had mesenchymal like morphology ...
متن کاملIn Vivo Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Neonatal and Adult Rat Hearts
We hypothesized that the neonatal rat heart would bring transplanted human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to maturity as it grows to adult size. In neonatal rat heart, engrafted hiPSC derivatives developed partially matured myofibrils after 3 months, with increasing cell size and sarcomere length. There was no difference between grafts from hiPSC-CMs or hiPSC-d...
متن کاملLarge-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملCardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure
Induced pluripotent stem cells (iPSC) are generated from fully differentiated somatic cells that were reprogrammed into a pluripotent state. Human iPSC which can be obtained from various types of somatic cells such as fibroblasts or keratinocytes can differentiate into cardiomyocytes (iPSC-CM), which exhibit cardiac-like transmembrane action potentials, intracellular Ca(2+) transients and contr...
متن کامل